Supra-operonic clusters of functionally related genes (SOCs) are a source of horizontal gene co-transfers
نویسندگان
چکیده
Adaptation of bacteria occurs predominantly via horizontal gene transfer (HGT). While it is widely recognized that horizontal acquisitions frequently encompass multiple genes, it is unclear what the size distribution of successfully transferred DNA segments looks like and what evolutionary forces shape this distribution. Here, we identified 1790 gene family pairs that were consistently co-gained on the same branches across a phylogeny of 53 E. coli strains. We estimated a lower limit of their genomic distances at the time they were transferred to their host genomes; this distribution shows a sharp upper bound at 30 kb. The same gene-pairs can have larger distances (up to 70 kb) in other genomes. These more distant pairs likely represent recent acquisitions via transduction that involve the co-transfer of excised prophage genes, as they are almost always associated with intervening phage-associated genes. The observed distribution of genomic distances of co-transferred genes is much broader than expected from a model based on the co-transfer of genes within operons; instead, this distribution is highly consistent with the size distribution of supra-operonic clusters (SOCs), groups of co-occurring and co-functioning genes that extend beyond operons. Thus, we propose that SOCs form a basic unit of horizontal gene transfer.
منابع مشابه
Conserved units of co-expression in bacterial genomes: an evolutionary insight into gene regulation
Genome-wide measurements of transcriptional activity in bacteria indicate that the transcription of successive genes is strongly correlated beyond the scale of operons. However, the underlying mechanisms are poorly characterized and a systematic method for identifying local groups of co-transcribed genes is lacking. Here, we identify supra-operonic segments of consecutive genes by comparing gen...
متن کاملHorizontally transferred gene clusters in E. coli match size expectations from uber-operons
Adaptation of bacteria occurs predominantly via horizontal gene transfer. While it is widely recognized that horizontal gene acquisitions frequently encompass multiple genes, it is currently unclear what the size distribution of successfully transferred DNA segments looks like and what evolutionary forces shape this distribution. Here, we identified 7,538 gene pairs that were consistently co-ga...
متن کاملFungal metabolic gene clusters—caravans traveling across genomes and environments
Metabolic gene clusters (MGCs), physically co-localized genes participating in the same metabolic pathway, are signature features of fungal genomes. MGCs are most often observed in specialized metabolism, having evolved in individual fungal lineages in response to specific ecological needs, such as the utilization of uncommon nutrients (e.g., galactose and allantoin) or the production of second...
متن کاملUnsupervised posterior analysis of signaling pathways from gene microarray data
Most gene clustering algorithms only group similarly co-expressed genes into clusters. In light of gene regulation network, many transitively co-expressed genes are also likely to be functionally related. We propose a new clustering approach that is able to group both similarly co-expressed genes and transitively co-expressed genes into tight clusters of interest.
متن کاملIdentification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis
Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017